Introduction to WfM Component Instrumentation

Intel Corporation September 29, 1997

Agenda

- What's Instrumentation
- WfM Baseline Instrumentation Requirements
- Delivering Instrumentation
- WfM Instrumentation Information Sources

Demystifying WfM component instrumentation

Definitions

- Desktop Management Interface (DMI)
- Service Provider (SP)
- Management Information Format (MIF)
- Management Interface (MI)
- Component Interface/Instrumentation (CI)
- Management Application (MA)

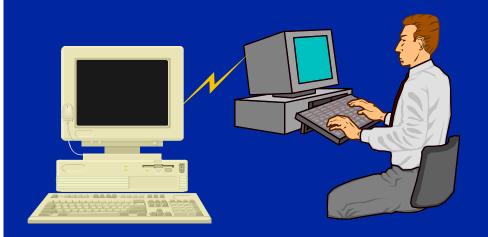
What's Instrumentation

- A WfM Baseline component technology to help reduce TCO
- Gives access/control to PC system/components
- Enables PCs to report unusual conditions autonomously

Instrumentation makes PC manageable

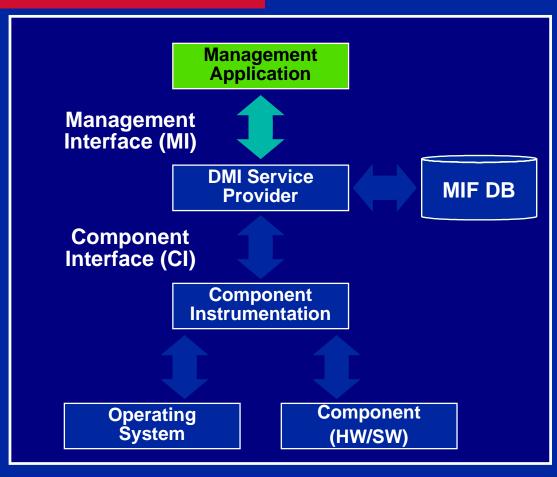
WfM Baseline Instrumentation Requirements

- Instrumentation requirements specified in terms of DMI 2.00
- Platforms must host DMI SP 2.00 and utilize MI and CI
- Platforms must instrument DMI standard groups/attributes


Standard instrumentation makes Baselinemanaged PCs remotely manageable

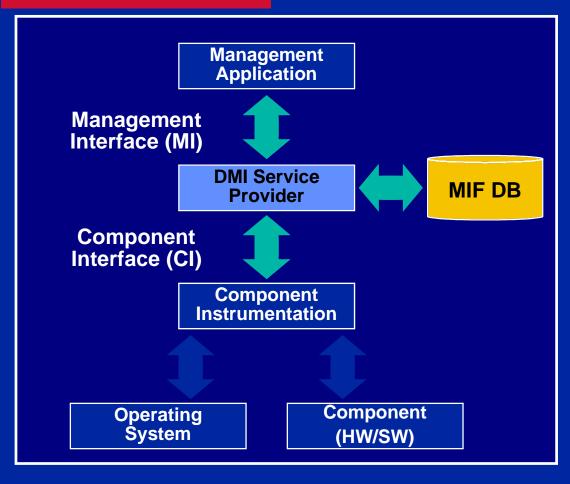
Delivering Instrumentation Three Steps

Service Provider


Instrumentation

- DMI Service Provider 2.0
- WfM Baselinecompliant instrumentation
- Interoperability validation

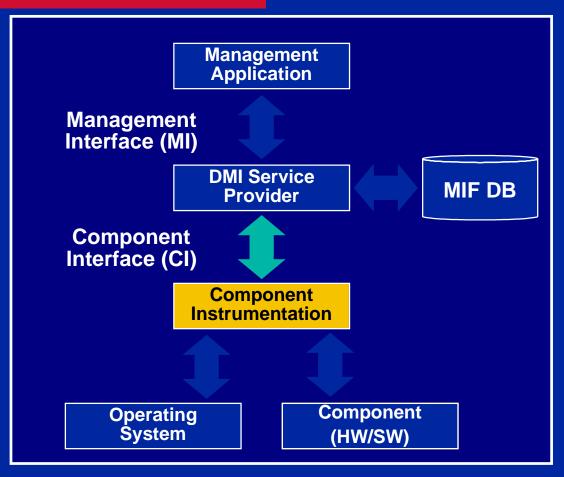
Delivering Instrumentation DMI 2.0 Architecture


DMI Service Provider

- Mas control/ manage elements of desktops or servers
- Applications communicate with SP through MI

Delivering Instrumentation DMI 2.0 Architecture

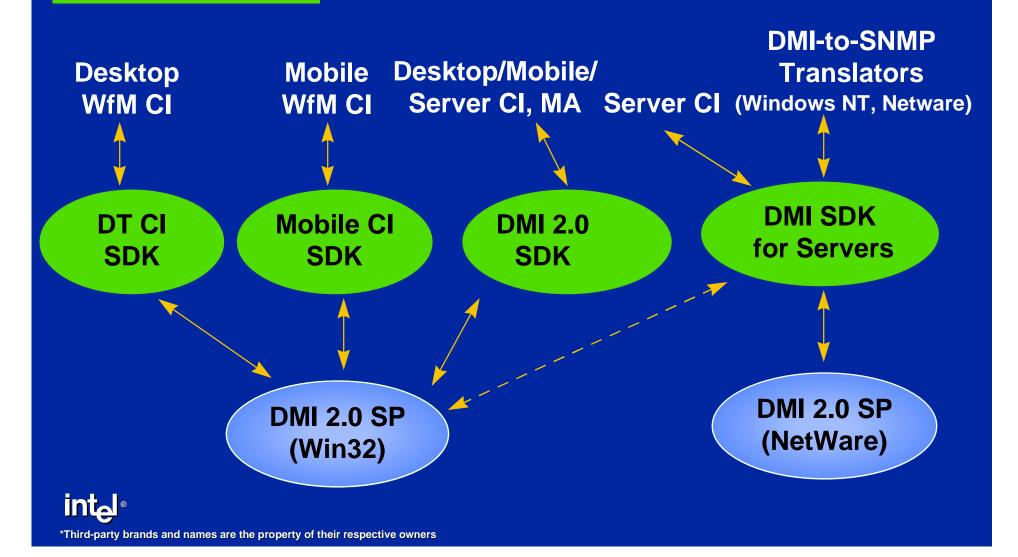
DMI Service Provider



- Three interfaces:
 CI, MI and
 interface to the
 MIF database
- MIF database contains descriptions of managed products
- Each component is described by its MIF

Delivering Instrumentation DMI 2.0 Architecture

DMI Service Provider


- CI consists of 7 main entry points
- Instrumentation communicates with SP through CI
- Components (HW/SW) are modeled with attributes

DMI provides powerful manageability

Delivering Instrumentation Development Support Tools

Instrumentation

Delivering Instrumentation CI Development Tools

Instrumentation

- Includes DMI SP 2.0 in binary form
- Allows CI development for desktops and laptops
- Interoperability validation tools for CI testing (DCTS2, CompCheck)

Delivering Instrumentation CI Development Tools

Instrumentation

- Setup utility for installing and redistributing DMI SP
- Comes with DMI MA and CI examples
- Is free

Several CI development tools are available

Delivering Instrumentation Working With DMI 2.0 SP SDK

Instrumentation

- Runs on Windows 95, and Windows NT
- Requires familiarity with MIF files
- Must know DMI Specification 2.00
- Requires C/C++ experience

Other product and corporate names may be trademarks of other companies and are used only for explanation and to the owners' benefit, without intent to infringe.

Delivering InstrumentationWorking With DMI 2.0 SP SDK

Instrumentation

- SDK header files and libraries:
 - Error codes in \include\dmi2err.h
 - DMI 2.0 API in \include\dmi2com.h
 - Memory handling API in \include\dmi2mem.h
 - Indication handling API in \include\clidmi.h

Find API info quickly using header files

Delivering Instrumentation Instrumentation Guidelines

Instrumentation WfM WfM Baseline MIF **Standard Groups** and User-**Defined Extensions User-Added Groups** Intel DMI 2.0 SDK CI Code intal®

- Start with WfM standard groups
- Add productspecific groups
- Use CompCheck to validate your MIF
- Choose instrumentation model (.EXE, .DLL, device driver)

Delivering Instrumentation Instrumentation Guidelines

Instrumentation WfM WfM Baseline MIF **Standard Groups** and User-**Defined Extensions User-Added Groups** Intel DMI 2.0 SDK CI Code

- Use SDK examples as templates
- Implement the 7 instrumentation entry points
- Install the component and register with DMI SP
- Use DCTS and Compcheck for testing

Delivering Instrumentation Start with WfM standard groups

Instrumentation

Start Path

Name = "DUMMY
INSTRUMENTATION"

Win32 = DirectInterface

End Path

MIF DB

- Select a symbolic name for your component
- Win32 =
 Means Windows 95
 and Windows NT
 platforms

Delivering Instrumentation Extending Standard Groups

Instrumentation

Start Attribute Name =

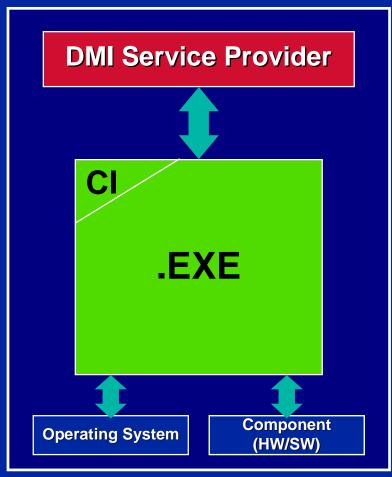
"Attribute_Name"

ID = 1

Value = * "DUMMY
INSTRUMENTATION"

End Attribute

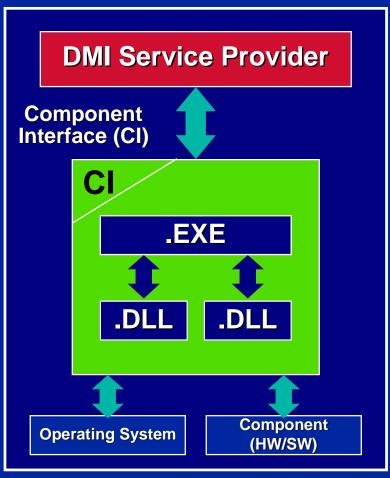
 Add productspecific groups and attributes


"*" means the attribute is instrumented

MIF DB

Delivering Instrumentation Choose Instrumentation Model

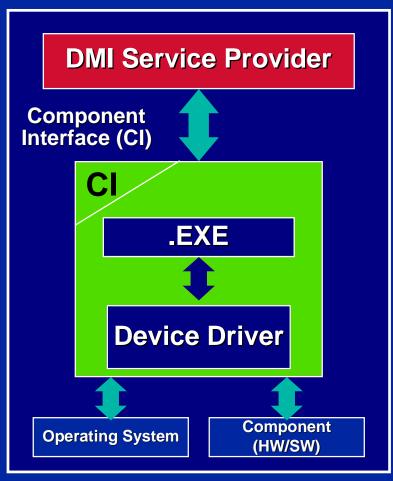
Instrumentation



A stand-alone .EXE module that can run as a service

Delivering Instrumentation Choose Instrumentation Model

Instrumentation

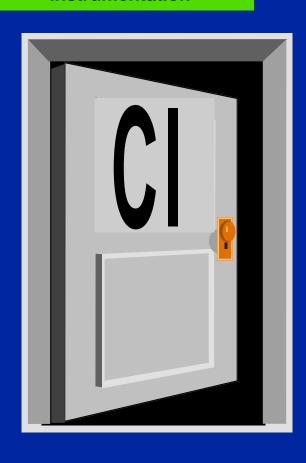


 A combination of .EXE and .DLLs to reduce memory foot print

Delivering Instrumentation Choose Instrumentation Model

Instrumentation

 A combination of .EXE and device driver for getting ring zero data


Instrumentation can be implemented as EXEs, DLLs or device drivers

intel®

*Third-party brands and names are the property of their respective owners

Delivering Instrumentation Implement CI Entry Points

Instrumentation

- CiGetAttribute()
- CiGetNextAttribute()
- CiSetAttribute()
- CiReserveAttribute()
- CiReleaseAttribute()
- CiAddRow()
- CiDeleteRow()

You must implement all seven!

Delivering Instrumentation Implementation Checklist

Instrumentation

Set node address and register with SP

Check for installed components

Find component ID using "exactMatch"

- **Install the component MIF**
- **Initialize the CI entry points**
- Fill group and attribute info
- Register component as Direct-Interface

Delivering Instrumentation Test the instrumentation

- Run CompCheck for DMI compliance checking
- Use DCTS2 to exercise/test your instrumentation
- Test your CI code locally and remotely

Test for interoperability and compliance with WfM baseline.

Stage Demo

- Step through the Multi-Timer instrumentation code example
- Run Multi-Timer instrumentation on the managed node
- Use DCTS2 on the managing node to subscribe for, and receive events from the managed node

WfM Instrumentation Information Sources

- Intel DMI 2.0 SP SDK Updates
 - www.intel.com/managedpc
- Technical Support
 - Newsgroups and FAQs in developer area of www.intel.com/managedpc
 - developer_support@intel.com
 - support@dmtf.org
- DMI 2.0 Specification and Other DMTF Documents
 - WfM CD, www.dmtf.org

Summary

- DMI provides powerful manageability
- Three WfM development tools are available
- Save time by using the SDK examples
- Instrumentation can be implemented as EXEs, DLLs or device drivers
- Instrumentation must implement the seven CI entry points

Call to Action

 Develop WfM compliant instrumentation for your products